

The Impact of ESG Frameworks and AI Technologies on Communication Satisfaction, Job Satisfaction, and Job Performance in the Retail Sector: An SEM Approach

Sweta Saurabh¹ Sachi Dwivedi²

Received: December 20, 2024 Accepted: May 9, 2025 Published: June 2, 2025

Keywords:

Communication Satisfaction; Job Satisfaction; Job Performance; ESG; Artificial intelligence in retail

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission.

Abstract:

Purpose: This study explores how Environmental, Social, and Governance (ESG) frameworks and Artificial Intelligence (AI) technologies influence communication satisfaction, job satisfaction, and job performance in the retail sector.

Design/Methodology/Approach: Using a structured questionnaire, data was collected from 656 customer-facing employees in Delhi via convenience sampling. Confirmatory Factor Analysis (CFA) and Structural Equation Modeling (SEM) were conducted using IBM AMOS 21.0.

Findings: Communication satisfaction positively affects job satisfaction and job performance. Job satisfaction mediates this relationship, while ESG and Al act as moderators, strengthening these effects.

Originality/Value: The study introduces ESG and AI as moderating variables in a less-explored communication-performance framework.

1. INTRODUCTION

Retail sales employees are key to customer satisfaction and business success. This study investigates how Communication Satisfaction (CS) influences Job Performance (JP), with Job Satisfaction (JS) as a mediator. Effective communication enhances clarity, engagement, and efficiency, while poor communication hampers morale and productivity. Using data from customer-facing employees, Structural Equation Modeling (SEM) reveals that Environmental, Social, and Governance (ESG) frameworks and Artificial Intelligence (AI) technologies significantly moderate these relationships. ESG fosters transparency, while AI improves information flow. The study offers actionable insights for retail managers to strengthen communication systems, enhance employee outcomes, and maintain competitive advantage in a dynamic retail environment.

2. LITERATURE REVIEW AND HYPOTHESIS DEVELOPMENT

2.1. Communication Satisfaction (CS)

Communication Satisfaction (CS) reflects employees' contentment with organizational communication. Evolving from effectiveness-focused models, CS now encompasses informational and relational aspects, measured through validated tools like the CSQ, aiding communication audits and enhancing organizational performance and employee engagement.

2.2. Job Satisfaction (JS)

Job Satisfaction (JS) stems from psychological and organizational factors, linked to motivation and achievement. Measurement tools identify key areas: interpersonal relations, work conditions, compensation, career growth, and training opportunities.

I Business Institute, Greater Noida, India

² I Business Institute, Greater Noida, India

2.3. Job Performance (JP)

Job Performance (JP) is task execution using resources, shaped by behaviors like attendance. It includes task and contextual performance, assessed through tools to enhance organizational outcomes.

2.4. ESG Frameworks (ESG)

ESG frameworks promote sustainability, transparency, and risk reduction, attracting talent and enhancing long-term value. They serve as both ethical commitments and strategic tools improving communication satisfaction.

2.5. Al Technologies

AI enhances real-time communication and decision-making in retail. Integrated with ESG, tools like chatbots and analytics boost service quality, job performance, satisfaction, and workplace transparency.

2.6. Relationship between the Variables

Table 1. Relationship between the Variables - Job performance (JP), Job satisfaction (JS), and Communication satisfaction (CS)

Dimension	Key Relationship	Supporting Studies	Notes
CS and JS	Positive relationship; CS significantly impacts JS.	Muchinsky (1977), Pincus (1986), Pettit et al. (1997)	Employee communication satisfaction leads to contentment with work and greater job engagement.
CS and JP	Direct relationship; CS enhances JP, but the impact depends on organizational communication practices.	Bosu et al. (2019), Ratia and Tuzlukaya (2019), Goris (2007)	Effective communication helps employees achieve better performance by reducing misunderstandings and fostering clarity.
JS and JP	Interdependent relationship; higher JS results in improved JP, and vice versa.	Judge et al. (2001), Wright and Cropanzano (2000), Tabassum et al. (2016), Vroom (1964)	Satisfied employees are more likely to perform well, and good performance further enhances satisfaction.
CS, JS, and JP	JS mediates the relationship between CS and JP.	Pincus (1986), Davar and Bala (2012), Platis et al.(2015), Lamond et al. (2009), Salleh et al. (2012)	Communication satisfaction leads to JS, which in turn positively impacts job performance.
Role of Supervisors	Supervisor communication style directly affects the influence of CS on JS.	Foehrenbach and Rosenberg (1982), Pettit et al. (1997)	Supervisors play a crucial role in shaping communication satisfaction and its subsequent impact on job satisfaction.
Cultural Context	The relationship between CS, JS, and JP varies across cultural and industry-specific contexts.	Lamond et al. (2009), Salleh et al. (2012), Abdulwahab (2016), Yvonne et al. (2014), Bin (2015)	Research highlights industry- specific (e.g., Chinese and Malaysian retail sectors) and cultural nuances in communication and performance links.

Source: Own research

Table 2. Transformative Impact of ESG Practices on Job performance (JP), Job satisfaction (JS), and Communication satisfaction (CS)

Study	Key Variables/ Focus	Key Findings	Implications
An Empirical Study on Corporate ESG Behavior and Employee Satisfaction: A Moderating Mediation Model. (Zhang et al., 2024)	Corporate ESG behaviors, employee satisfaction, transparency, internal control, executive awareness, education	ESG behaviors enhance employee satisfaction. Transparency and internal control are pivotal. Higher executive environmental awareness and employee education strengthen ESG and satisfaction relationships.	ESG practices should focus on transparency and internal mechanisms. Educational initiatives for employees and leadership can amplify the positive impact of ESG
The Effects of ESG Activities on Job Satisfaction, Organizational Trust, and Turnover Intention. (Seo et al., 2022)	ESG activities, job satisfaction, organizational trust, turnover intention	Social ESG activities significantly impact job satisfaction. Governance positively affects organizational trust. Job satisfaction improves trust and reduces turnover intention.	ESG strategies should emphasize social and governance aspects. Job satisfaction and trust should be key metrics for ESG-driven organizational effectiveness.
ESG and Employee Engagement: How Sustainable Practices Can Boost Morale and Productivity. (Directors' Institute, 2024)	ESG, employee engagement, morale, productivity	ESG initiatives increase employee engagement and align them with organizational goals. Sustainable practices foster a positive culture, boosting morale and productivity.	Companies should involve employees in ESG initiatives and communicate ESG principles clearly to enhance engagement and performance.
Sustainability Starts at the Top: How Green Transformational Leadership Shapes Corporate Social Responsibility and Environmental Performance (Xu et al., 2024)	CSR, environmental performance, green transformational leadership (GTL), pro-environmental behavior	CSR enhances environmental performance through GTL, which motivates employees to engage in pro-environmental behaviors.	Integrating CSR with green leadership initiatives is vital for sustainable business practices. Leadership should model and inspire pro- environmental values among employees.

Key links exist between communication satisfaction, trust, turnover, and performance. ESG practices, guided by transparent leadership, enhance satisfaction and align culture for positive employee outcomes.

Table 3. Pivotal Role of AI on Job performance (JP), Job satisfaction (JS), and Communication satisfaction (CS)

Study	Key Variables/Focus	Key Findings	Implications
Revolutionizing Retail: HR Tactics for Improved Employee and Customer Engagement (Afolabi et al., 2023)	HR strategies, employee engagement, customer satisfaction, workplace culture	Employee engagement directly influences customer satisfaction and loyalty. Key HR strategies include training, recognition, rewards, and a positive culture.	Retailers should invest in innovative HR strategies to enhance both employee and customer engagement, driving sustainable growth and competitive advantage.
Role of Technological Intervention in Employee Retention: With Special Reference to AI-Driven Solutions (Krishna et al., 2022)	AI-driven solutions, employee engagement platforms, data analytics, ethical issues	Technological tools improve retention by enhancing engagement, but strategic and humancentered implementation is critical. Ethical issues like data privacy need careful handling.	Companies must use technology thoughtfully to improve retention while addressing ethical concerns and fostering a balanced human-tech approach.

Study	Key Variables/Focus	Key Findings	Implications
AI in HRM: Case Study Analysis (Gryncewicz et al., 2023)	AI algorithms, recruitment, employee engagement, retention prediction	AI supports better recruitment, engagement, and retention. Interpretable algorithms like decision trees play a key role but cannot replace human judgment.	AI should be integrated as a supportive tool in HRM for efficiency while maintaining a balance with human oversight.
The Role of Artificial Intelligence in Enhancing Job Performance: Ethical Implications and Practical Applications (Faiz & Gasmi, 2024)	AI applications, ethical implications, job displacement, privacy	AI boosts productivity, decision-making, and routine task automation. However, it raises ethical concerns such as job displacement and data bias.	Organizations need to establish ethical guidelines for AI adoption, ensuring productivity gains while mitigating risks.
A Study of Artificial Intelligence on Employee Performance and Work Engagement: the Moderating Role of Change Leadership (Wijayati et al., 2022)	AI adoption, change leadership, work engagement, employee performance	AI enhances performance and engagement, with change leadership moderating its effects. Leadership is critical during rapid changes.	Organizations should emphasize leadership development and strategic AI adoption to ensure success and minimize disruption.
Artificial Intelligence as a Boundary-Crossing Object for Employee Engagement and Performance (Prentice et al., 2023)	AI tools, job engagement, service performance, job security	AI positively impacts engagement and performance, mediated by service quality. Job security moderates these effects, enhancing engagement.	HR and service marketers should focus on job security and AI integration to maximize employee performance and satisfaction.
The Impact of AI on Internal Communication within an Organization (Alkhateeb et al., 2023)	AI in communication, team efficiency, flexibility, human touch	AI improves efficiency and clarity but risks depersonalization and disengagement. Balancing AI and human interaction is essential.	Organizations should align AI communication strategies with employee readiness and focus on preserving the human element.


AI boosts communication, job satisfaction, and performance by enhancing efficiency and decisions, but ethical use and human-centered leadership are key to success.

2.7. Hypothesis Formulation

Based on the preceding discussion, the following hypotheses have been proposed:

- **H1**: Communication satisfaction (CS) has a significant positive influence on job satisfaction (JS), with the integration of ESG and AI enhancing this relationship.
- **H2**: Communication satisfaction (CS) has a significant positive influence on job performance (JP), with ESG and AI initiatives acting as moderators.
- **H3**: Job satisfaction (JS) has a significant positive influence on job performance (JP), with ESG and AI contributing to this effect.
- **H4**: Job satisfaction (JS) mediates the relationship between communication satisfaction (CS) and job performance (JP), with ESG and AI amplifying the mediating effect.

Figure 1 depicts the study's conceptual framework.

Figure 1. Proposed Model **Source:** Own research

METHOD

3.1. Sample

The study focused on sales department employees in retail organizations across Delhi-NCR, India. The study was conducted from February 2023 to April 2024. Eligible organizations had operated for at least five years, and respondents had a minimum of one year of experience. A structured questionnaire was distributed to 750 individuals, with 656 valid responses, resulting in an 87.5% response rate. The sample consisted of 57.3% males, with an average age of 24.5 years (SD = 7.6), and an average organizational tenure of 2.5 years (SD = 1.7). Most participants were graduates (40.5%) and unmarried (53.2%).

3.2. Measures

Validated scales were adapted to measure key constructs:

- Communication Satisfaction (CS): Measured using 21 items across six dimensions (e.g., Communication Environment, Information from Supervisors).
- **Job Satisfaction (JS):** Measured using 21 items grouped into five categories (e.g., growth, working conditions).
- **Job Performance (JP):** Evaluated through four dimensions (e.g., Contextual and Task Performance).
- **ESG Practices:** Covered environmental, social, governance practices, and general ESG perceptions.
- **AI Technologies:** Assessed through dimensions like AI understanding (AU), ease of use (EU), and performance enhancement (PE).

All items were rated on a 5-point Likert scale (1 = Strongly Disagree, 5 = Strongly Agree).

DATA ANALYSIS AND RESULTS

Data were analyzed using a two-step SEM approach (Anderson & Gerbing, 1988) via IBM AMOS 21.0, including CFA to validate measurement models. All variables showed acceptable normality and reliability.

4.1. Measurement Models

All components showed acceptable skewness-kurtosis; CFA confirmed first and second-order measurement model validity.

The dataset with all 83 items across all the dimensions of 5 constructs, shows fairly consistent mean scores mostly between 3.3 and 3.8, indicating generally positive but moderate agreement levels. Standard deviations hover around 1.0, suggesting moderate variability in responses across items. The negative skewness and negative kurtosis values for most items imply that responses are slightly left-skewed (more high scores) and platykurtic (flatter distribution than normal), reflecting a tendency toward mild agreement with less extreme opinions.

Initially, first-order CFAs showed poor fit; after removing low-loading items, revised models demonstrated acceptable fit.

Recommended Criterion First order CFA for AI for JS for CS for ESG for JP (Hu & Bentler, 1999) Improved Model Improved Model Improved Model Improved Model Improved Model Fit Index Initial Model Initial Model Initial Model Initial Model Initial Model NS at 698.770 320.107 416.5 364.775 439.110 376.138 500.234 310.205 460.111 285.134 χ2 p<0.05 df (Degrees of N/A 179 109 174 155 98 84 150 105 140 95 Freedom) $\chi 2/df$ 3.904 2.937 2.394 4.481 3.335 2.954 3.001 <5 2.353 4.478 3.286 RMR [Root mean < 0.10 0.065 0.037 0.045 0.035 0.051 0.040 0.040 0.038 0.042 0.035 residual] CFI [Confirmatory >0.90 0.921 0.962 0.862 0.967 0.939 0.946 0.945 0.960 0.937 0.965 fit index] RMSEA [Root < 0.08 0.067 0.054 0.046 0.073 0.073 0.062 0.055 0.060 0.052 mean square error 0.045 of approximation] TLI [Tucker-Lewis >0.90 0.907 0.854 0.959 0.925 0.932 0.938 0.953

Table 4. First Order CFA Results

Source: Own research

0.930

0.958

.953

Validity and reliability testing showed all five constructs had significant factor loadings, high CR, Cronbach's alpha, and AVE values—confirming strong convergent validity and reliable measurement across dimensions.

Table 5 gives the details of one construct (CS). A similar result has been obtained from the other construct as well.

index]

^{*}Fit index didn't meet the acceptable threshold.

Table 5. Validity and Reliability

Construct	Factor/Dimension	Standardized Factor Loading	Item	Critical Ratio	Composite Reliability (CR)	Cronbach's Alpha	Average Variance Extracted (AVE)
		0.747	CE1				
	CE	0.776	CE2	18.231***	0.808	0.807	0.583
		0.768	CE3	18.081***			
		0.779	IRM1				
	IRM	0.803	IRM2	20.118***	0.832	0.831	0.622
		0.783	IRM3	19.677***			
		0.755	IRC1		0.789	0.787	0.555
	IRC	0.785	IRC2	17.235***			
		0.693	IRC3	15.84***			
CS		0.691	IRCM1			0.810	0.517
CS	IRCM	0.707	IRCM2	15.586***	0.811		
	IKCM	0.726	IRCM3	15.92***	0.811		0.317
		0.751	IRCM4	16.35***			
		0.734	IRP1				
	IDD	0.761	IRP2	18.237***	0.840	0.020	0.568
	IRP	0.763	IRP4	18.278***	0.840	0.839	0.308
		0.756	IRP5	18.107***			
		0.819	QC1				
	QC	0.762	QC2	20.256***	0.835	0.834	0.628
		0.795	QC3	21.218***			

Discriminant validity was confirmed as inter-factor correlations stayed below 0.85 and AVE square roots exceeded correlations.

Table 6. Discriminant Validity

Job Performance (JP)

000101101111111111111111111111111111111						
Factor/Dimension	TP	CP	AP	СВ		
TP	0.773					
СР	0.659	0.759				
AP	0.414	0.550	0.807			
СВ	-0.391	-0.339	-0.254	0.834		

Job Satisfaction (JS)

Factor/Dimension	WC	RMSC	SB	GO	TD
WC	0.792				
RMSC	0.613	0.729			
SB	0.505	0.586	0.809		
GO	0.629	0.690	0.604	0.748	
TD	0.612	0.717	0.582	0.712	0.759

Communication Satisfaction (CS)

Factor/Dimension	CÉ	IRM	IRC	IRCM	IRP	QC
CE	0.764					
IRM	0.718	0.788				
IRC	0.520	0.594	0.745			
IRCM	0.630	0.577	0.473	0.719		
IRP	0.629	0.651	0.514	0.614	0.754	
QC	0.665	0.599	0.545	0.694	0.699	0.792

Environmental, Social and Governance (ESG) Framework

Factor/Dimension	EP	SP	GP	GEP
EP	0.723			
SP	0.671	0.809		
GP	0.682	0.514	0.819	
GEP	0.656	0.518	0.690	0.718

Artificial Intelligence (AI)

Factor/Dimension	AU	EU	IJS	PE	GAIP
AU	0.762				
EU	0.643	0.756			
IJS	0.601	0.556	0.821		
PE	0.694	0.531	0.581	0.773	
GAIP	0.423	0.460	0.314	0.671	0.752

Note: Factor Correlation Matrix with squared roots of AVE on the diagonal

Source: Own research

Second-order CFA confirmed valid higher-order structures; all fit indices met criteria, with significant factor loadings across constructs, including CB's negative but significant loading with JP.

Table 7. Second Order CFA Results

Fit Index	Second order CFA for CS	Second order CFA for JS	Second order CFA for JP	Second order CFA for ESG	Second order CFA for AI
df (Degrees of Freedom)	164	114	86	155	98
χ2	413.285	325.874	388.102	364.775	439.110
χ2/df	2.520	2.859	4.513	2.353	4.481
TLI [Tucker–Lewis index]	0.954	0.955	0.932	0.959	0.925
CFI [Confirmatory fit index]	0.960	0.962	0.944	0.967	0.939
RMSEA [Root mean square error of approximation]	0.048	0.053	0.073	0.045	0.073
RMR [Root mean residual]	0.041	0.038	0.045	0.035	0.051

Source: Own research

Interpretation:

- **Degrees of Freedom (df)**: **CS** has the highest df at **164**, followed by **ESG** at **155**, while **AI** has **98**. A higher df indicates a more complex model.
- Chi-Square (χ^2): CS (413.285) and JS (325.874) have better chi-square values compared to ESG (364.775) and AI (439.110), though all values are acceptable.
- χ^2/df : Values below 5 are considered acceptable. CS (2.520), JS (2.859), and ESG (2.353) show good model fit, while JP (4.513) and AI (4.481) are slightly higher but within an acceptable range.
- TLI and CFI: Both TLI and CFI are above the recommended threshold of 0.90 for all components, indicating a strong model fit across the board. ESG has the best fit with TLI (0.959) and CFI (0.967).
- RMSEA: Values below 0.08 indicate a good fit. CS (0.048), JS (0.053), and ESG (0.045) show excellent fit, while JP (0.073) and AI (0.073) are within the acceptable range.
- RMR: Values below 0.10 are acceptable, with CS (0.041), JS (0.038), JP (0.045), ESG (0.035), and AI (0.051) all falling within this range, indicating good model fit.

Table 8. Second Order CFA Parameter Estimates

Construct	Dimension	Standardized Factor Loading	Critical Ratio
	TP	0.756	
	СР	0.874	11.099***
JP –	AP	0.601	10.64***
	СВ	-0.532	-8.333***
	CE	0.815	
	IRM	0.797	13.59***
cs =	IRC	0.686	11.971***
	IRP	0.821	13.557***
	IRCM	0.764	12.402***
	QC	0.826	14.445***
	WC	0.723	
	RMSC	0.821	13.517***
JS	SB	0.691	12.561***
	GO	0.873	13.501***
	TD	0.871	13.878***
	EP	0.707	19.480***
ESC	SP	0.720	18.330***
ESG	GP	0.715	17.225***
	GEP	0.729	18.881***
	AU	0.707	20.311***
	EU	0.712	18.776***
AI	IJS	0.731	19.435***
	PE	0.730	20.587***
	GAIP	0.745	20.765***

^{***} p<0.001

Table 9. Path Coefficients

Table 9.1. Direct Path Coefficients (Standardized Regression Weight)					
Path	Standardized Regression Weight	Critical Ratio (CR)	Significance (p-value)		
CS =>JS	0.675	12.841	0.0001		
CS =>JP	0.615	11.327	0.0002		
JS =>JP	0.712	14.027	0.0001		

Table 9.2. Moderation Effect (Interaction Terms)						
Moderation Path	Standardized Regression Weight	Critical Ratio (CR)	Significance (p-value)			
CS*ESG =>JS	0.89	2.04	0.0414			
CS*AI =>JS	0.92	2.79	0.0053			
CS*ESG =>JP	0.76	2.89	0.0039			
CS*AI => JP	0.79	2.75	0.0060			

Table 9.3. Mediation Effect (Indirect Paths)						
Mediation Path Indirect Effect Confidence Interval Significance (p-va						
CS=>JS=>JP	0.015	(0.05,0.25)	0.001			
ESG/AI amplify JS mediation	0.012	(0.03,0.21)	0.004			

^{***} p<0.001

Source: Own research

Interpretation:

- Path Strength and Significance: Standardized regression weights above 0.60 indicate strong relationships. Critical ratios exceeding 1.96 with p < 0.001 confirm statistical significance.
- **Direct and Moderation Effects:** All reported paths show statistically significant relationships.
- **Mediation Effect:** Communication Satisfaction indirectly improves Job Performance by 0.015 units through Job Satisfaction. The confidence interval (0.05–0.25), excluding zero, confirms a statistically significant and meaningful mediation effect.

4.2. Structural Model

The structural model (Figure 2) provides robust evidence supporting the four hypotheses, highlighting the direct, moderated, and mediated relationships among communication satisfaction (CS), job satisfaction (JS), job performance (JP), ESG, and AI.

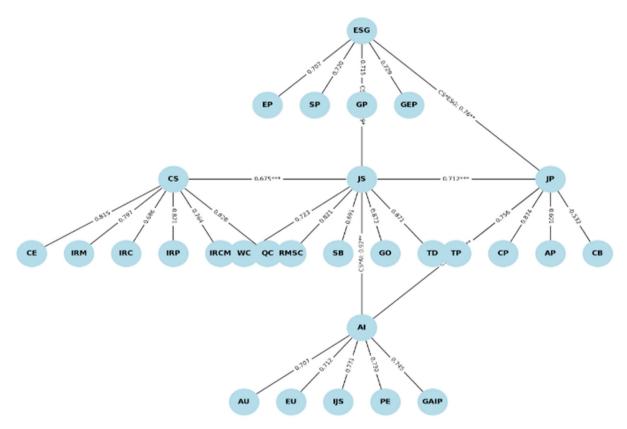


Figure 2. Path Analysis Source: Own research

H1: CS Positively Impacts JS, Enhanced by ESG and AI

The direct path from Communication Satisfaction (CS) to Job Satisfaction (JS) is significant (β = 0.675, p < 0.001), supporting H1. Moderation effects of ESG (β = 0.89, p = 0.041) and AI (β = 0.92, p = 0.005) strengthen this relationship, highlighting the positive influence of sustainability and technology.

H2: CS Positively Impacts JP, Moderated by ESG and AI

CS also significantly predicts Job Performance (JP) (β = 0.615, p < 0.001). Moderation by ESG (β = 0.76, p = 0.004) and AI (β = 0.79, p = 0.006) confirms enhanced impact under sustainable and tech-integrated environments.

H3: JS Positively Influences JP, Reinforced by ESG and AI

JS positively affects JP (β = 0.712, p < 0.001), further strengthened through associations with ESG (β = 0.664) and AI (β = 0.695).

H4: JS Mediates $CS \rightarrow JP$, Amplified by ESG and AI

JS significantly mediates the CS–JP link (Indirect $\beta = 0.015$, CI = 0.05–0.25). ESG and AI amplify this effect (Indirect $\beta = 0.012$, CI = 0.03–0.21).

This study confirms CS's strong impact on JS and JP, with ESG and AI significantly enhancing these effects. JS mediates CS–JP, highlighting its central role in sustainable, tech-driven organizational performance.

5. CONCLUSION AND SCOPE FOR FUTURE RESEARCH

This study establishes that communication satisfaction, when supported by ESG frameworks and AI technologies, significantly improves job satisfaction and job performance. ESG and AI act as enhancers, amplifying these relationships. Job satisfaction also plays a mediating role, further underlining its importance in organizational dynamics. These findings highlight the strategic value of integrating communication, sustainability, and technology to create high-performing and engaged workplaces.

The negative correlation between Counterproductive Behavior and other performance dimensions calls for deeper exploration. Future studies could adopt longitudinal methods, industry-specific approaches, or cross-cultural perspectives to enrich understanding of ESG and AI's long-term impact.

References

- Abdulwahab, S. (2016). The relationship between job satisfaction, job performance and employee engagement: An explorative study. *Issues in Business Management and Economics*, 4(1), 1–8.
- Afolabi, J. O. A., Olatoye, F. O., Eboigbe, E. O., Abdul, A. A., & Daraojimba, H. O. (2023). Revolutionizing retail: hr tactics for improved employee and customer engagement. *International Journal of Applied Research in Social Sciences*, 5(10), 487-514.
- Alkhateeb, M., Duné, E., & Akriem, E. (2023). The impact of AI on internal communication within an organization: A critical examination of AI adoption.
- Anderson, J. C., & Gerbing, D. W. (1988). Structural equation modeling in practice: A review and recommended two-step approach. *Psychological Bulletin*, *103*(3), 411–423. https://doi.org/10.1037//0033-2909.103.3.411
- Bin, A. S. (2015). The relationship between job satisfaction, job performance and employee engagement: An explorative study. *Issues in Business Management and Economics*, 4(1), 1–8.
- Bosu, R. R., Abhicharattibutra, K., & Wichaikhum, O. A. (2019). Communication satisfaction and job performance among nurses in tertiary level hospitals, the People's Republic of Bangladesh. *Nursing Journal*, *46*(1), 193–205.
- Davar, S. C., & Bala, R. (2012). Relationship between job satisfaction & job performance: A meta-analysis. *Indian Journal of Industrial Relations*, 290–305.
- Directors' Institute. (2024, July 17). ESG and employee engagement: How sustainable practices can boost morale and productivity. Directors' Institute. https://www.directors-institute.com/post/esg-and-employee-engagement-how-sustainable-practices-can-boost-morale-and-productivity

- Faiz, M., & Gasmi, S. (2024, July). The role of artificial intelligence in enhancing job performance: Ethical implications and practical applications. ResearchGate. https://doi.org/10.13140/RG.2.2.30163.39209
- Foehrenbach, J., & Rosenberg, K. (1982). How are we doing? *Journal of Organizational Communication*, 12, 3–9.
- Goris, J. R. (2007). Effects of satisfaction with communication on the relationship between individual-job congruence and job performance/satisfaction. *Journal of Management Development*, 26(8), 737–752. https://doi.org/10.1108/02621710710777255
- Gryncewicz, W., Zygała, R., & Pilch, A. (2023). AI in HRM: case study analysis. Preliminary research. *Procedia Computer Science*, 225, 2351-2360. https://doi.org/10.1016/j.procs.2023.10.226
- Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. *Structural equation modeling: a multidisciplinary journal*, 6(1), 1-55. https://doi.org/10.1080/10705519909540118
- Judge, T. A., Thoresen, C. J., Bono, J. E., & Patton, G. K. (2001). The job satisfaction—job performance relationship: A qualitative and quantitative review. *Psychological Bulletin*, *127*(3), 376-407. https://doi.org/10.1037//0033-2909.127.3.376
- Krishna, C., Veeralakshmi, B., & Upadhyay, R. (2022). Role of technological intervention in employee retention: With special reference to AI-driven solutions. *NeuroQuantology*, 20(3), 1170–1175
- Lamond, D., Zheng, C., & Tian-Foreman, W. A. (2009). Job satisfaction and turnover in the Chinese retail industry. *Chinese Management Studies*.
- Muchinsky, P. M. (1977). Organizational communication: Relationships to organizational climate and job satisfaction. *Academy of Management Journal*, 20(4), 592–607. https://doi.org/10.2307/255359
- Pettit, J. D., Goris, J. R., & Vaught, B. (1997). An examination of organizational communication as a moderator of the relationship between job performance and job satisfaction. *The Journal of Business Communication*, *34*(1), 81–98. https://doi.org/10.1177/002194369703400105
- Pincus, J. D. (1986). Communication satisfaction, job satisfaction, and job performance. *Human Communication Research*, 12(3), 395–419. https://doi.org/10.1111/j.1468-2958.1986.tb00084.x
- Platis, C., Reklitis, P., & Zimeras, S. (2015). Relation between job satisfaction and job performance in healthcare services. *Procedia Social and Behavioral Sciences*, *175*, 480–487. https://doi.org/10.1016/j.sbspro.2015.01.1226
- Prentice, C., Wong, I. A., & Lin, Z. C. (2023). Artificial intelligence as a boundary-crossing object for employee engagement and performance. *Journal of Retailing and Consumer Services*, 73, 103376. https://doi.org/10.1016/j.jretconser.2023.103376
- Ratia, L. R., & Tuzlukaya, S. E. (2019). The relationship of the dimensions of job satisfaction to job performance: A case study of a multinational company in Lesotho. *Journal of Research in Emerging Markets*, 1(3), 8–19. https://doi.org/10.30585/jrems.vli3.356
- Salleh, R., Nair, M. S., & Harun, H. (2012). Job satisfaction, organizational commitment, and turnover intention: A case study on employees of a retail company in Malaysia. *World Academy of Science, Engineering and Technology*, 72(12), 316–323.
- Seo, W., Oh, J., & Kim, Y. (2022). The Effects of ESG Activities on Job Satisfaction, Organizational Trust, and Turnover Intention. *The Journal of Internet Electronic Commerce Resarch*, 22(1), 197-213. https://doi.org/10.37272/jiecr.2022.02.22.1.197
- Tabassum, U., Khan, B., Sherani, A. W., & Khan, I. (2016). The relationship between job satisfaction and job performance among employees: A case of commercial banks in Punjab City, Pakistan. Vroom, V. H. (1964). *Work and motivation*. Wiley.
- Wijayati, D. T., Rahman, Z., Fahrullah, A. R., Rahman, M. F. W., Arifah, I. D. C., & Kautsar, A. (2022). A study of artificial intelligence on employee performance and work engagement: the moderating role of change leadership. *International Journal of Manpower*, *43*(2), 486-512. https://doi.org/10.1108/ijm-07-2021-0423

- Wright, T. A., & Cropanzano, R. (2000). Psychological well-being and job satisfaction as predictors of job performance. *Journal of Occupational Health Psychology*, *5*(1), 84–94. https://doi.org/10.1037//1076-8998.5.1.84
- Xu, X., Akbar, A., & Sokolova, M. (2024). Sustainability Starts at the Top: How Green Transformational Leadership Shapes Corporate Social Responsibility and Environmental Performance. *Polish Journal of Environmental Studies*. https://doi.org/10.15244/pjoes/190002
- Yvonne, W., Rahman, R. H. A., & Long, C. S. (2014). Employee job satisfaction and job performance: A case study in a franchised retail-chain organization. *Research Journal of Applied Sciences, Engineering and Technology, 8*(17), 1875–1883. https://doi.org/10.19026/rjaset.8.1176
- Zhang, T., Zhang, J., & Tu, S. (2024). An Empirical Study on Corporate ESG Behavior and Employee Satisfaction: A Moderating Mediation Model. *Behavioral Sciences*, *14*(4), 274. https://doi.org/10.3390/bs14040274