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Abstract: Risk is an inherent part of our daily personal and professional life, 
and it can be found in every aspect of it. Particularly in finance and economics, 
managing and understanding risk is very important, yet defining and measuring 
it is a challenge due to its subjective nature.

Effective risk management requires different tools and methodologies, many 
of which originated from Markowitz’s work in 1952. This paper examines risk 
measures, emphasizing the concept of coherence introduced by Artzner et al. 
(1999). A coherent risk measure satisfies monotonicity, positive homogeneity, 
sub-additivity, and translation invariance.

Key measures, including variance, skewness, Value at Risk (VaR), and Conditional 
Tail Expectation (CTE) will be analyzed in this paper. While widely used, variance 
and skewness lack coherence. VaR, popular in finance, also fails to meet coherence 
standards. In contrast, CTE emerges as a coherent and reliable metric, addressing 
VaR’s shortcomings by focusing on extreme scenarios.
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1.	 INTRODUCTION

Risk is and always has been a concern in our lives. However, risk is not an objective concept, 
thus, it is not easy to give a precise definition to it. Roughly speaking, risk means a chance 

that a certain injury or loss associated with a given action happens. Because of the great variety 
of risks and the increased coincidence of different events associated with risk occurring, it is 
becoming increasingly difficult to identify and measure risks. Also, it is becoming indispen-
sable for one working in certain areas of finance, insurance, microeconomics, etc. to be able 
to measure, control and mitigate risk. Because of the importance of risk management, a great 
deal of studies, tools and measures have been developed in the past decades, highlighting the 
need for a proper definition of risk as well as specific measures to calculate and predict risks. 
In this paper, we will show and describe different methods and measures which are used to 
quantify risk. Since the pioneering work of Markowitz (1952), plenty of different risk meas-
ures and methods have been proposed. Acerbi and Tasche (2002) state that if a measure is not 
coherent, then it can simply not be named a risk measure, while the notion of coherence itself 
was first introduced by Artzner et al. (1999) and currently, is a fundamental concept related to 
the acceptability of a risk measure.

2.	 COHERENCE OF A RISK MEASURE

In order to discuss the coherence of a risk measure, some preliminary details are needed. First, 
let (Ω, F, P) be a probability space and let L0(Ω, F, P) (or short L0) denote the space of all random 
variables (i.e. all measurable functions) on this probability space. A financial position X is an ele-
ment of L0(Ω, F, P)  modeling an uncertain payoff. A risk measure on the other hand is a function 
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ρ ∶ L0  → R (or sometimes ρ ∶ L0  → R ∪{+∞}) which defines a preference order on L0 allowing a 
decision-maker to choose between any two given positions (Assa, 2011).

In easier terms, a coherent risk measure means the risk measure covers all the maximum risks 
possible. On the other hand, four mathematical axioms must be fulfilled for a risk measure to be 
called coherent (Artzner et al., 1999).

Definition 1. Let K be a convex cone3 in L0 containing R (R as the space of constant functions). A 
function ρ ∶ K  → R is a coherent risk measure if ρ is
1.	 positive homogeneous, i.e. ρ(λX) = λρ(X), ∀X ∈ K and λ ∈ (0,+∞). 
2.	 sub-additive, i.e. ρ(X + Y ) ≤ ρ(X) + ρ(Y ), ∀X, Y ∈ K. 
3.	 translation invariant, i.e. ρ(X + m) = ρ(X) – m, ∀X ∈ K and m ∈ R. 
4.	 decreasing, i.e. ρ(X) ≤ ρ(Y ), ∀X, Y ∈ K such that X ≥ Y almost surely. 

If axioms (1) and (2) are replaced by 
5.	 convexity, i.e. ρ(λX + (1 – λ)Y) ≤ λρ(X) + (1 – λ)ρ(Y ), ∀X, Y ∈ K and λ ∈ [0,1], the risk measure 

ρ is called a convex risk measure.

In economic terms, Axiom (1) shows that increasing exposure to a risky position leads to a pro-
portional rise in the level of risk. Notably, this axiom introduces a new preference relation in the 
framework of coherent risk measures that cannot be replicated within the expected utility approach 
(Assa, 2011). Axiom (2) reflects the widely accepted principle that diversification reduces risk, a 
feature also present in the expected utility framework due to the concavity of the utility function. 
Axiom (3) grants coherent risk measures a cash-invariance property4. Lastly, Axiom (4) shows that 
if the payoff of one financial position consistently exceeds that of another, the risk measure will 
preserve this order (Assa, 2011). Based on these axiom criteria or properties some risk measures 
will be described and their coherence (or lack of) will be proved.

3. VARIANCE

Variance is a statistical measure that quantifies the dispersion of returns around the mean (average) 
return of an investment or financial position. In economic terms, it is used as a risk measure to 
represent the uncertainty or variability in the potential outcomes of an asset’s returns. A higher 
variance indicates greater variability and, therefore, a higher level of risk, as it implies a wider 
range of possible outcomes around the expected return (Wasserman, 2013).

However, variance as a risk measure assumes that all deviations from the mean—both positive 
and negative—are equally undesirable, which may not align with how investors perceive risk 
(Kagan & Shepp, 1998). For this reason, while variance is a foundational concept in finance (e.g., 
in portfolio theory), it is often supplemented by other risk measures, such as standard deviation, 
Value at Risk (VaR), or downside risk measures, to better capture real-world preferences and risk 
aversion (Grootveld & Hallerbach, 1999).

3	 In linear algebra, a cone is a subset of a vector space that is closed under positive scalar multiplication; that 
is, Cis a cone if x∈C implies sx∈C for every positive scalar s.

4	 The cash-invariance property ensures that the risk measure responds linearly and predictably to chang-
es in cash levels, which is crucial for practical applications like setting capital reserves or determining the 
amount needed to hedge a risky position. It reflects the idea that holding additional cash reduces financial 
risk, as cash serves as a buffer against potential losses.
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3.1.	 Definition

Let X be a numerically valued random variable with expected value µ = E(X). Then the variance 
of X, denoted by Var (X), is given as

Var (X) = E((X – µ)2)	 (1)

3.2.	 Coherence of Variance

As mentioned above a measure cannot be called a risk measure, in case it is not coherent. And to 
show that Var(X) is not coherent, it is needed to show that Var(X) is neither positive homogenous 
nor sub-additive.

Let X and Y, be two random variables. Let Var(X) indicate the variance of X, and with σ(X) its 
standard deviation. It is known that σ(X) = (VarX)1/2 
1.	 Positive homogeneity: If X is multiplied by a scalar α (i.e. a number), the properties of 

variance tell us that Var(αX ) = α2Var(X ), because the variance is not linear. However,  
α2 Var(X) ≠ αVar(X), hence the variance is not positive homogenous.

Proof: Let X be a random variable and α, a constant. Then Var(αX) = α2Var(X). From the definition 
of variance and repeatedly applying linearity of expectation, we have:

(2)

2.	� Sub-additivity: From the properties of variance, it is known that 

	 Var(X + Y) = Var(X) + Var(Y) + 2Cov(X,Y), 

	 where Cov(X,Y) is the so-called covariance5. 

	 Using correlation ρ(X,Y) = cov(X,Y) ∕(σ(X)σ(Y)), the Var(X + Y) can be re-written as :

Var(X + Y) = Var(X) + Var(Y) + 2ρ(X,Y)σ(X)σ(Y)	 (3)

Unless ρ(X,Y) is zero (X and Y are not linearly dependent) or negative (they are negatively corre-
lated), we have that the right-hand side of the previous equation is always bigger than the simple 
sum of the variances, therefore Var(X + Y) ≥ Var(X) + Var(Y). Therefore, variance is not sub-ad-
ditive. Even if the other two properties (monotonicity and translation invariance) are respected, 
the variance is not a coherent risk measure.

5	 Covariance is a measure of the joint variability of two random variables. The sign of the covariance, there-
fore, shows the tendency in the linear relationship between the variables (Rice, 2007). In economic and finan-
cial terms, covariance shows how two assets move in relation to each other. It provides diversification and re-
duces the overall volatility for a portfolio. A positive covariance indicates that two assets move in tandem. A 
negative covariance indicates that two assets move in opposite directions. In the construction of a portfolio, it 
is important to attempt to reduce the overall risk and volatility while striving for a positive rate of return.
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4.	 SKEWNESS

Another measure of risk is its third moment, differently known as the skewness. In probability 
theory and statistics, skewness is a measure of the asymmetry of the probability distribution of 
a real-valued random variable about its mean (Groeneveld & Meeden, 1984). Skewness not only 
measures asymmetry in distribution but also provides insights into the nature of extreme values 
or outliers. It quantifies how much the distribution of data deviates from a symmetrical bell curve. 
When the skewness is positive, it often suggests that the mean is greater than the median due to 
the influence of high outliers. Conversely, negative skewness implies that the mean is less than 
the median, often because of the impact of low outliers (Von Hippel, 2005).

4.1.	 Definition

Mathematically, the skewness of a random variable X is the third standardized moment γ1, defined as

(3)

where μ is the mean, σ is the standard deviation, E is the expectation operator and μ3
6 is the third 

central moment. Generally, skewness is a measure of symmetry, or more precisely, the lack of 
symmetry. A distribution, or data set, is symmetric if it looks the same to the left and right of the 
center point.

4.2.	 Types of Skewness

The first thing noticeable about a distribution’s shape is whether it has one mode (peak) or more 
than one. If it’s unimodal, the next thing is noticeable whether it’s symmetric or skewed to one 
side, just as seen in Figure 1 (Doane & Seward, 2011).
1.	 If the bulk of the data is at the left and the right tail is longer, the distribution is skewed right 

or positively skewed.
2.	 If the peak is toward the right and the left tail is longer, the distribution is skewed left or 

negatively skewed.
3.	 And in the case where the skewness = 0, then the data are perfectly symmetrical.

Figure 1. Types of Skewness illustrated by histograms
Source: Doane and Seward (2011)

6	 A central moment is a moment of a probability distribution of a random variable about the random vari-
able's mean; that is, it is the expected value of a specified integer power of the deviation of the random vari-
able from the mean (Stirzaker, 1999).

https://en.wikipedia.org/wiki/Standard_deviation
https://en.wikipedia.org/wiki/Expected_value
https://en.wikipedia.org/wiki/Central_moment
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4.3.	 Coherence of Skewness

Skewness is also not a coherent risk measure, because it violates monotonicity, subadditivity, 
positive homogeneity, and translation invariance. In order not to prolong this paper, only one of 
these violations (which suffices to not define a risk measure as coherent) will be shown.

For λ > 0, a coherent risk measure must satisfy ρ(λX) = λρ(X). From the definition of skewness, 
we have that

(5)

Thus, skewness is scale-invariant (remains the same regardless of the chosen λ), which violates 
the positive homogeneity property of coherence.

5.	 VALUE AT RISK

The need to improve control of financial risks has led to a uniform measure of risk called value 
at risk (VaR), which the private sector is increasingly adopting as a first line of defense against 
financial risks (Holton, 2014). The Basel Committee on Banking Supervision announced in April 
1995 that capital adequacy requirements for commercial banks are to be based on VAR7 and in 
December 1995, the Securities and Exchange Commission issued a proposal that requires publicly 
traded U.S. corporations to disclose information about derivatives activity, with a VAR measure as 
one of three possible methods for making such disclosures (Jorion, 1996). Thus, the unmistakable 
trend is toward more-transparent financial risk reporting based on VAR measures.

5.1.	 Definition

Value at Risk is a statistical measure that aggregates all the risks of a portfolio into a single number 
suitable for use in the boardroom, reporting to regulators, or disclosure in an annual report. It is 
simply a way to describe the magnitude of likely losses in a portfolio, so VAR summarizes the 
worst expected loss over a target horizon within a given confidence interval (Duffie & Pan, 1997). 
More precisely, VaR is defined as follows.

Let X be a random variable and α ∈ [0,1], q is called an α-quantile if 

P[X < q] ≤ α ≤ P[X ≤ q].	 (6)

Given the random variable X and a number α ∈ [0,1], define 

VaRα(X) = –qα(X).	 (7)

X is called VaR-acceptable if VaRα(X) ≤ 0 or, equivalently, if qα(X) ≥ 0.

VaR has the following properties:
1.	 X ≥ 0 → VaRα(X) ≤ 0; 
2.	 X ≥ Y → VaRα(X) ≤ VaRα(Y)
3.	 VaRα(X) (βX) = βVaRα(X) (X), for ∀β ≥ 0; and
4.	 VaRα(X)  (X + k) = VaRα(X) (X) – k, for ∀k ∈ R.
7	 Also known as BCBS, is a committee of banking supervisory authorities that was established by the cen-

tral bank governors of the Group of Ten (G10) countries in 1974.
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VaR is always specified with a given confidence level α – typically α = 95% or α = 99%. This 
generalized definition of VaR can be calculated for any random variable.

5.2.	 Coherence of Value at Risk

Consider two independent random variables X and Y (representing portfolio returns) and define 
Value at Risk as follows:

VaRα = inf {x ∈ R ∶ P(Z ≤ x) ≤ 1 – α}	 (8)

Where Z represents a portfolio’s return, and α ∈ (0,1) is the confidence level. The subadditivity 
property requires:

VaRα(X + Y) ≤ VaRα(X) + VaRα(XY).	 (9)

The subadditivity property ensures that diversification does not increase risk, reflecting the principle 
that combining two portfolios should not lead to higher risk than assessing them individually. In 
order to show that VaR fails to satisfy the coherence axioms, we need to construct a counterexample.

Let X and Y have the following probability distributions: P(X = −1) = 0.05, P(X = 0) = 0.95 and 
P(Y = −1) = 0.05, P(Y = 0) = 0.95. Furthermore, assume X and Y are independent random variables.

At confidence level α = 0.95, compute VaR0.95 (X). Since P(X = −1) = 0.05, the worst 5% of out-
comes occur when X = −1. Thus: VaR0.95 (X) = 1. Similarly, VaR0.95 (Y) = 1, because Y has the same 
distribution as X.

Now calculate VaR0.95 (X + Y). The possible value of X + Y are: X + Y = –2, X + Y = –1, X + Y = 0. 
To determine VaR0.95 (X + Y), the smallest value x such that P (X + Y ≤ x ) ≤ 0.05 is needed. From the 
distribution P (X + Y ≤ –2) = 0.0025, P (X + Y ≤ –1) = 0.0025 + 0.095 = 0.0975. Since P (X + Y ≤ –1) 
> 0.05, the worst 5% of outcomes occur at X + Y = –1. Thus VaR0.95 (X + Y) = 1.

The subadditivity axiom on the other hand requires that VaR0.95(X + Y) ≤ VaR0.95(X) + VaR0.95(Y). 
From the computed values of the counterexample, we know that VaR0.95(X + Y) = 1, VaR0.95(X) = 1  
and VaR0.95(Y) = 1, making the satisfaction of the subadditivity axiom impossible to satisfy. This 
means that even though VaR is commonly used in most of the financial and banking sectors, it still 
does not comply with the definition of a coherent risk measure.

5.3.	 Drawbacks of Value at Risk

As mentioned VaR is not a coherent risk measure, meaning that there are some drawbacks in using 
it as an adequate measure of risk (Frey & Embrechts, 2010):
1.	 First, VaR loses convexity properties, so it does not fulfill the property of sub-additivity, 

therefore it cannot be a coherent measure.
2.	 It is tail insensitive. It tells us that in the α · 100% of the cases the loss will not be greater than 

a certain level, but it does not give any information about the size of the loss in the remaining 
(1 − α) · 100% of the cases.

3.	 It is ineffective in recognizing the dangers of concentrating on credit risk.
4.	 Finally, VaR does not indicate the severity of the economic consequences of exposure to rare 

events.
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6.	 CONDITIONAL TAIL EXPECTATION

The quantile risk measure (meaning the VaR, discussed in Chapter 5) assesses the “worst case” loss, 
where the worst case is defined as the event with a (1 – α) probability. As we mentioned above, one 
problem with the quantile risk measure is that it does not take into consideration what the loss will 
be if that (1 – α) worst-case event occurs (Danielsson & de Vries, 1997). The loss distribution above 
the quantile (VaR) does not affect the risk measure. The Conditional Tail Expectation (or CTE) 
was chosen to address some of the problems with the quantile risk measure (VaR). It was proposed 
simultaneously by several research groups, so it has many names, including Tail Value at Risk (or 
Tail-VaR) or Tail Conditional Expectation (or TCE) (Peng, 2009).

TCE provides a measure of the riskiness of the tail of a distribution and is an index that has gained 
popularity over the years. It has been getting more and more attention for measuring risk in any 
situation with a non-normal distribution of losses.

6.1.	 Definition

Like the quantile risk measure, the CTE is defined using some confidence level α, 0 ≤ α ≤ 1. As with 
the quantile risk measure, α is typically 90%, 95% or 99%. In other words, the CTE is the expected 
loss given that the loss falls in the worst (1 − α) part of the loss distribution. The worst (1−α) part of 
the loss distribution is the part above the α-quantile, qα. If qα falls in a continuous part of the loss 
distribution (that is, not in a probability mass) then we can interpret the CTE at confidence level α, 
given the α-quantile risk measure qα, as

CTEα = E [L│L > qα] = E [L│L > VaRα(L)],	 (10)

where L is the random loss and VaR is the Value at Risk. Intuitively, CTE measures the average 
loss exceeding the α-quantile of the distribution, considering the worst-case outcomes beyond the 
Value-at-Risk threshold (Artzner et al., 1999). This formula does not work if qα falls in a probability 
mass, that is, if there is some ε > 0 such that qα+ε= qα.

6.2.	 Coherence of Conditional Tail Expectation

1)	� Monotonicity: If X ≤ Y almost most surely, then CTEα (X) ≤ CTEα​(Y). This holds because the 
higher losses in Y will increase both the VARα and the expected losses beyond that threshold.

2)	 Subadditivity: CTEα(X + Y) ≤ CTEα(X) + CTEα(Y). This property ensures diversification 
benefits, as combining risks X and Y cannot result in a greater risk than summing their indi-
vidual risks. The mathematical justification arises from the fact that CTE, being an expectation 
conditional on a tail event, is a convex function.

3)	 Positive Homogeneity: For any λ > 0, CTEα(λX) = λCTEα(X). Scaling all outcomes by λ scales 
the Value-at-Risk and the expected shortfall by the same factor.

4)	 Translation Invariance: For a constant c, CTEα(X + c) = CTEα(X) + c. Adding a constant c 
shifts all outcomes by c, which increases the expected shortfall by the same amount.

The CTE has become a very important risk measure (since it has proven to be coherent) in actuarial 
practice. It is intuitive, easy to understand and to apply with simulation output. It provides a more 
comprehensive assessment of risk compared to Value-at-Risk (VaR) by considering not just the 
threshold loss (VaR) but also the average of losses beyond that threshold (Artzner et al., 1999). More-
over, unlike VaR, which only provides a point estimate, CTE delivers a richer picture of potential 
risk, making it more reliable for stress testing and financial decision-making in volatile markets. As 
a mean, it is more robust concerning sampling error than the quantile (Landsman & Valdez, 2005).
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7. CONCLUSION

In conclusion, the concept of coherence in risk measures is crucial for ensuring that financial 
risk is evaluated consistently and effectively. Coherent risk measures provide a robust frame-
work by satisfying key properties such as subadditivity, monotonicity, positive homogeneity, 
and translation invariance, which are essential for rational decision-making and effective risk 
management. Among the discussed risk measures, Conditional Tail Expectation (CTE) stands 
out as a fully coherent measure, capturing tail risks comprehensively and offering a more 
reliable perspective for extreme loss scenarios. In contrast, Value-at-Risk (VaR), while widely 
used in the industry, fails to meet the subadditivity property, which limits its ability to reflect 
diversification benefits. Similarly, Variance, although mathematically simple and commonly 
employed, is not coherent due to its inability to differentiate between upside and downside 
risk, as it considers all deviations from the mean equally. Skewness, while informative for 
asymmetry, lacks coherence as it is not monotonic or sub additive, making it more suited as a 
complementary measure rather than a standalone risk metric.

Despite its limitations, Value-at-Risk (VaR) remains the industry standard and the most com-
monly used risk measure in the financial industry due to its regulatory acceptance and simplic-
ity. However, as the industry evolves, there is growing recognition of the superior theoretical 
properties and practical relevance of CTE, especially for stress testing and assessing tail risks 
in volatile markets.
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